
June 1994 Report No. STAN-CS-TR-94-1518

llllllllllllllllllll
PB96-152780

STeP: The Stanford Temporal Prover

by

Zohar Manna, Anuchit Anuchitanukul,
Nikolaj Bjorner, Anca Browne,

Edward Chang, Michael Colon, Luca De Alfaro,
Harish Devarajan, Henny Sipma and Tomas Uribe

Department of Computer Science

Stanford University

Stanford, California 94305

IO

<^n
&-^ HUm^:£ ^u&U'jfi iJSiß^EÜTED 1

STeP: the Stanford Temporal Prover*

Zohar Manna, Anuchit Anuchitanukul, Nikolaj Bj0rner,
Anca Browne, Edward Chang, Michael Colon,

Luca de Alfaro, Harish Devarajan, Henny Sipma, Tomas Uribe

Computer Science Department, Stanford University
Stanford, CA 94305

Abstract

We describe the Stanford Temporal Prover (STeP), a system being developed to
support the computer-aided formal verification of concurrent and reactive systems
based on temporal specifications. Unlike systems based on model-checking, STeP
is not restricted to finite-state systems. It combines model checking and deductive
methods to allow the verification of a broad class of systems, including programs
with infinite data domains, iV-process programs, and iV-component circuit designs,
for arbitrary N. In short, STeP has been designed with the objective of combining
the expressiveness of deductive methods with the simplicity of model checking.

The verification process is for the most part automatic. User interaction oc-
curs mostly at the highest, most intuitive level, primarily through a graphical proof
language of verification diagrams. Efficient simplification methods, decision proce-
dures, and invariant generation techniques are then invoked automatically to prove
resulting first-order verification conditions with minimal assistance.

We describe the performance of the system when applied to several examples, in-
cluding the ^-process dining philosopher's program, Szymanski's iV-process mutual
exclusion algorithm, and a distributed TV-way arbiter circuit.

"This research was supported in part by the National Science Foundation under grant CCR-92-
23226, by the Defense Advanced Research Projects Agency under contract NAG2-892, and, by the
United States Air Force Office of Scientific Research under contract F49620-93-1-0139.

Contents

1 Introduction 1
1.1 Preliminaries 2
1.2 System Overview 3
1.3 Implementation 6

2 Overview: A Simple Example 6
2.1 Verification Diagrams 7
2.2 Proving Invariance 8
2.3 Proving Precedence 10
2.4 Proving Response 12

3 Model Checking 16

4 Invariant Generation 19
4.1 Bottom Up: Local Invariants 21
4.2 Bottom Up: Linear Invariants 24
4.3 Top-down: Strengthening 25

5 Theorem-proving support 27
5.1 Simplification 27
5.2 Decision Procedures 28
5.3 First-order Prover 29
5.4 Interactive Prover 29

6 Examples 30
6.1 N-Process Dining Philosophers Program 30
6.2 Szymanski's N-Process Mutual Exclusion Algorithm 31
6.3 Distributed iV-way Arbiter Circuit 35

7 Conclusions 40

1 Introduction

The Stanford Temporal Prover, STeP, is being developed to support the computer-
aided formal verification of concurrent and reactive systems based on temporal spec-
ifications. Unlike most systems for temporal verification, STeP is not restricted to
finite-state systems, but combines model checking with deductive methods to allow
the verification of a broad class of systems, including parameterized (iV-component)
circuit designs, parameterized (iV-process) programs, and programs with infinite
data domains. STeP was briefly introduced in [Man94].

A verification system which combines model checking and deductive methods
offers a number of advantages over purely model checking or purely deductive ap-
proaches. Such a system should:

• Reduce the complexity of the verification task by

- Decomposition

Each component may be verified by the most suitable verification method. For
instance, this would allow a model checker to verify an individual component
even if it could not verify, because of the state explosion problem, the entire
system.

• Allow verification of a broader class of systems:

- Parameterized programs

- Parameterized circuits

- Systems with infinite data domains

• Automate the verification task:

- Automatic generation of invariants

- Effective simplifications

- Model checking

- Decision procedures

- Verification rules

• Allow visual interaction:

- Verification diagrams

• Provide debugging tools:

- Counter-examples

- Debugging guidance

In short, STeP has been designed with the objective:

To combine the expressiveness of deductive methods with the simplicity
of model checking.

Our development efforts have been focused, in particular, on the following areas.
First, in addition to the textual language of temporal logic, the system supports

a structured visual language of verification diagrams [MP94a] for guiding, organiz-
ing, and displaying proofs. Verification diagrams allow the user to construct proofs
hierarchically, starting from a high-level, intuitive proof sketch and proceeding in-
crementally, as necessary, through layers of greater detail.

Second, the system implements powerful techniques for automatic invariant gen-
eration. Deductive verification in the temporal framework almost always relies on
finding, for a given program and specification, suitably strong (inductive) invari-
ants and intermediate assertions. The user can typically provide an intuitive, high-
level invariant, from which the system derives stronger, more detailed, top-down
invariants. Simultaneously, bottom-up invariants are generated automatically by
analyzing the program text. By combining these two methods, the system can of-
ten deduce sufficiently detailed invariants to carry through the entire verification
process.

Finally, the system provides an integrated suite of simplifications and decision
procedures for automatically checking the validity of a large class of first-order and
temporal formulas. This degree of automated deduction is sufficient to handle most
of the verification conditions that arise during the course of deductive verification—
and the few conditions that are not solved automatically typically correspond to the
critical steps of manually constructed proofs, where the user is most able to provide
guidance.

The remainder of this section provides a brief overview of the system and its
components. Section 2 provides a concrete description of how the system can be
used, by showing how several properties of Peterson's mutual exclusion algorithm
are verified. Various aspects of the system are described in greater detail in the
subsequent sections, including the model checker, verification rules and verification
diagrams, automatic invariant generation, and theorem-proving support for estab-
lishing verification conditions. Finally, Section 6 presents some more substantial
examples: the ./V-process dining philosopher's program, Szymanski's iV-process mu-
tual exclusion algorithm, and a distributed iV-way arbiter circuit.

1.1 Preliminaries

A reactive system (program) is a system that maintains an ongoing interaction with
its environment. Examples of reactive systems are concurrent and distributed pro-
grams, embedded systems, and communication networks. A reactive system must
be specified by its behavior over time, represented as sequences of states, i.e., com-
putations. The specification of a reactive system may be given as a formula of

linear-time first-order temporal logic, a language which combines first-order formu-
las with temporal operators for describing state sequences. For instance, given a
program V,

states that, in every computation of V, every state satisfying x — 0 is eventually
followed by a state satisfying y = 0. A temporal formula <p is V-valid if V t= <p, i.e.,
<p holds over all computations of V. A state (first-order) formula1 <p is V-state valid
\fp t= □ ip, i.e., <p holds in all states of all computations of V. Our goal is to show
the T'-validity of a given temporal specification ip for a reactive system V.

Our computational model for reactive systems, based on [MP91b], is that of
(fair) transition systems. A fair transition system consists of an initial condition, a
set of transitions, i.e., next-state relations, and a fairness requirement. Fair transi-
tion systems can be used to define the semantics of a simple programming language
SPL which includes constructs for concurrency, nondeterministic selection, and pa-
rameterized statements. For instance,

II S\i]
i=l

where the same process S is executed N times in parallel, is a typical parameterized
statement, with parameter N. A program containing a parameterized statement is
a parameterized program.

The remainder of this paper assumes that the reader is familiar with the fair
transition model, SPL, and the language of temporal logic. For an in-depth treat-
ment of these topics, see [MP91b].

1.2 System Overview

Figure 1 presents a high-level overview of the STeP system. A brief description of
each component follows.

Input The basic input to STeP is an SPL program V and a temporal logic formula
<p which expresses the property of V to be verified. The SPL program is modeled as
a fair transition system 5. Even though SPL can be used to describe both software
and hardware systems, STeP is not restricted to SPL, and can be used to verify
any system that can be modeled as a fair transition system.

Verification Diagrams The preferred approach to constructing a proof is through
verification diagrams. Through a graphical user interface, the user can draw a di-
agram that represents the proof of a given formula ip (see Section 2.1). The corre-
sponding verification conditions are generated automatically from the verification
diagram and are checked by the automatic prover.

1 We refer to first-order formulas as state formulas or assertions.

IN
n o e a

3
T3

5
ft
ft
ft

IN

'

*v C«

O »1

a to
9Q o^ as -. ar
!■*■ s 2 O < S s a —•

2. 3
BS (R)
a
ST

-

<3

o
s

e
ora
are
5" n
O
E. a
Bi
S n

• •
Ö
!?
ST "H. •

§" ■a

^|
■i Si

2.

*1

o
t a

td

£ » §
BS BS A
O g-'O

3 tf
r 1 * 1 a. 3

^1
f '

Ö s
f # ö &
3
&5

tion

»

0)

"D

O o a

Figure 1: An overview of the STeP system

Model Checking The model checker takes as input the fair transition system S
and the (simplified) formula ip. It tries to show that <p is valid for 5 by searching
for a counterexample in the form of a computation satisfying -up (see Section 3).
For finite-state systems, the algorithm guarantees termination (up to space/time
limitations) with a positive answer or counterexample. The model-checker may
also be applied to infinite-state systems; termination with a positive answer or
counterexample is not guaranteed in this case.

Automatic Prover This is the main module of the deductive component of
STeP, and comprises four distinct subcomponents that interact with each other
in the course of a proof:

• Verification rules are used to reduce the proof of P-validity of a temporal
formula cp to the proof of validity of a set of first-order formulas, called veri-
fication conditions.

• Bottom-up invariants, generated by static analysis of the transition system
and the program text, are used to simplify verification conditions.

• The first-order prover (subsections 5.1- 5.3) is responsible for simplifying ver-
ification conditions and proving their validity if possible. This is done with
a combination of (contextual) rewriting techniques, decision procedures, and
general theorem proving. This prover can also use previously proven invari-
ants.

• A number of automatic techniques, including invariance strengthening and
propagation, are available if the first-order prover is unable to prove all ver-
ification conditions. These techniques are primarily intended to strengthen
invariants that are not inductive and to generate intermediate assertions.

Interactive Prover If the automatic prover is not able to prove a verification
condition, the user can choose to give the simplified but unproven verification con-
dition to the interactive prover, where, if it is indeed valid, it can be proved with
some user guidance (see subsection 5.4).

If the formula is not valid, the user may be able to receive some suggestions on
why it is not valid. This information can then be used to modify the program or
strengthen an intermediate assertion or invariant. Note that the availability of the
model checker allows the user to search for a counterexample while simultaneously
attempting an interactive proof.

The interactive prover also features deduction rules for temporal logic that can
be used to simplify and prove temporal formulas.

1.3 Implementation

STeP is written in Standard ML of New Jersey with the exception of the model
checker, which is implemented in C.

A prototype X-windows version of the graphical user interface is being developed
using the eXene library for Concurrent ML.

Currently, after six months of implementation, the size of the source code is
approximately 40,000 lines.

2 Overview: A Simple Example

This section describes how STeP can be applied to the deductive verification of
Peterson's mutual exclusion algorithm, as implemented by program PET of Figure 2.
In fact, since program PET is finite-state, each of the properties proved below can
also be verified automatically using the STeP model checker.

local yi, j/2 : boolean where y1 = F,y2 = F
$: integer where s = 1

Pi

to: loop forever do
noncritical

s:= 1
await -ij/2 V s = 2
critical
yi := F

mo: loop forever do
~m\: noncritical
m2: i/2 := T

ms: s := 2
m^\ await —it/i V s = 1
77*5: critical
.m6: y2 := F

Figure 2: Program PET (Peterson's algorithm for mutual exclusion).

In program PET, the basic mechanism protecting access to the critical sections
(represented by statements £5 and m5), is provided by the boolean variables yx and
2/2- Each process Pi, for i = 1,2, that is interested in entering its critical section sets
its yi variable to T. On exiting the critical section, the corresponding y,- is reset to

F.
The problem with this approach is that the two processes may arrive at their

waiting positions, £4 and m± respectively, at about the same time, with both j/i =
j/2 = T. If the only criterion for entry to the critical section was that the y; of the
competitor be F, this situation would result in a deadlock (tie).

The variable s is intended for breaking such ties. It may be viewed as a signature,
in the sense that each process that sets its & variable to T also writes its identity
number in s at the next step taken by the process. Then, if both processes are at
the waiting position, the first to enter will be P, such that s ^ i. For i = 1,2, let
T denote the index of the other process. The fact that s ^ i implies that s = T,
which means that the competitor PT was the last to assign a value to s. Therefore
Pi should have priority.

We first introduce our graphical proof language of verification diagrams, and we
then illustrate the deductive verification of a few properties of program PET. Details
about our specification language can be found in [MP91b]. The deductive methods
used are discussed in more detail in [MP91a] and [MP94b]. A more extensive
explanation of verification diagrams is given in [MP94a].

2.1 Verification Diagrams

In proofs of properties of reactive systems, it is typically necessary to consider several
assertions (state formulas) at the same time and to determine which transitions lead
from one assertion to another. A verification condition {</>}T{V>} is an assertion
stating that, whenever r is taken from a state satisfying 9, the resulting state
must satisfy ip. It is convenient to visualize these conditions with a diagram that
summarizes the assertions under consideration and the possible transitions between
them.

A verification diagram [MP94a] is a directed labeled graph where:

Nodes in the graph are labeled by assertions. We will often refer to the node
by the assertion labeling it.

•

• Edges in the graph represent transitions between assertions. Each edge con-
nects one assertion to another and is labeled by the name of a transition in
the program. We refer to an edge labeled by r as a r-edge.

• One of the nodes may be designated as a terminal node ("goal" node). In
the graphical representation, this node is distinguished by having a boldface
boundary. No edges depart from a terminal node.

Verification diagrams provide a concise representation of sets of verification con-
ditions as follows. For a nonterminal node (labeled by) <p and transition r, let
<pi,...,tpkbe the nodes reached by r-edges departing from <p. We say that <pi,...,<pk
are the r-successors of <p. The verification condition associated with tp and r is given
by:

{<p}-T {p V v?! V ••• V lfk}.

In other words, there is an implicit r-edge connecting p to itself. Note that for the
case k = 0, i.e., no r-edges depart from <p, the verification condition associated with
if and T is given by:

if} r {<p}.

No verification conditions are associated with terminal nodes.
Since a diagram provides a succinct representation of a large set of verification

conditions, it can often present a useful and illuminating overview of a complex
proof.

A diagram is valid over program V (V-valid) if all the verification conditions
associated with nodes of the diagram are 'P-state valid.

2.2 Proving Invariance

The mutual exclusion property for program PET is expressed by the following safety
formula:

<PME'- D_,(a^5 A at-m5).

where atJ5 and at.m5 are predicates stating that control is at statements £5 and
7725, respectively.

Rule INV

Using deductive methods, the following verification rule, rule INV, can be used to
prove that the state formula p is invariant in every computation of a program V,
where 0 is the initial condition and T is the set of transitions of the transition
system corresponding to V:

INV For strengthening assertion p :
51. G-^
52. MTM
53. p-*p

Dp

The rule states that in order to establish the "P-validity of the temporal formula
Dp, it suffices to find an assertion ip, strengthening p, such that premises S1-S3 are
P-state valid. Premise SI states that the initial condition 0 implies <p. Premise S2
states that the verification condition {<p} T {p} holds for each transition T £T, i.e.,
if r is taken from any state satisfying <p, the result is a state also satisfying ip. If
premises SI and S2 hold for (p, then ip is called an inductive assertion; by induction,
ip holds in every state of a computation. By premise S3, it follows that p also holds
in every state of a computation.

Note that all the premises of rule INV are state formulas, whereas the conclusion
is a temporal formula. This is typical of the deductive methodology, which applies
verification rules to reduce the proof of temporal formulas to the proof of first-order
conditions.

PET: Mutual Exclusion

To prove mutual exclusion for program PET, p is taken to be:

p: -<(at-£5 A at.m5).

In this example, as is often the case, verification requires identifying a suitable
strengthening assertion <p. To assist in this task, STeP provides built-in mechanisms
for automatically generating low-level invariants and automatically strengthening
proposed invariants suggested by the user.

Low-level invariants (also called "bottom-up invariants") are guaranteed to be
invariants by the way they are generated, so they can be used in establishing the
premises of the above verification rule. The following automatically generated in-
variants are necessary for establishing mutual exclusion for program PET:

Xi: at J3..6 -> t/i
X2- at.m3.s -> 2/2

Strengthened invariants (also called "top-down invariants") are obtained by
weakest precondition propagation. Consider, for instance, statement £4. If the
corresponding transition r^4 is never to violate mutual exclusion, it must be the
case that ->y2 V s = 2 is false whenever control is at £4 and m5. After simplifying
with respect to X2, this yields the following strengthened invariant:

<pi\ atJ.4 A at-m5 —>• -i(s = 2).

Similarly:

(f2- atJ.5 A atjm.4 —> -i(s = 1).

Thus, for this example, the proof of mutual exclusion is entirely automatic. First,
STeP identifies the specification as a safety property and invokes rule INV. Since
p is not inductive, the proof does not succeed. Therefore, bottom-up invariants,
including xi and X2, are generated. The system again attempts to establish the
invariance of p, and in doing so, generates the strengthened invariant <p:

<p: p A (pi A <f2-

Finally, STeP is able to prove each of the premises of rule INV.
More typically, however, the user must provide direction to the system by sug-

gesting a strengthening assertion cp. Even if <p is not immediately inductive, the
system can apply invariant strengthening heuristics to complete the proof.

Invariant generation and strengthening methods are discussed more fully in Sec-
tion 4.

2.3 Proving Precedence

The property of 1-bounded overtaking for process Pi of program PET may be ex-
pressed by the following "nested waiting-for formula," where the wait-for ("weak
until") operator W is right associative:

<PB: atJ4 => (->at-m5) W at-m5 W (-<atjm5) W atJ5

In other words, once process P\ has reached statement £4, process Pi may enter its
critical section roj at most once before P\ enters its critical section.

Rule WAIT

The following verification rule, rule WAIT, may be used to establish nested waiting-
for formulas for a program V:

WAIT For intermediate assertions <pn,...,<po :
n

Wl. p -> V <Pj
3=0

n W2. Wi) T {\/<pj} for * = 1,.
3=0

W3. <pj-*qi for i — 0, ■ ■ •, n
p => qnWqn-i •■•9i W?o

This rule states that to establish the T'-validity of the nested-for formula, it
suffices to find intermediate assertions (pn,...,<p0 such that premises W1-W3 are
P-state valid. Premise Wl states that every state satisfying p also satisfies some <pi,
for some intermediate assertion cpi. By premise W2, every y>,--state, for i = 1,..., n,
is followed by a (pj-st&te, for j = 0,..., i. It follows that

p => <pnW<Pn-l--<PlW<P0

holds for every computation of V, and by monotonicity, premise W3 establishes the
desired result.

Wait-for Diagram

We can visualize the proof with a verification diagram, in particular a wait-for
diagram. A wait-for diagram is a weakly acyclic verification diagram with nodes
<pn,..., ipo, where <po is a terminal node, satisfying the following requirement: when-
ever node ipi is connected by an edge to node <pj, then i > j. V-valid wait-for dia-
grams can be used to establish the T'-validity of nested wait-for formulas, as stated
by the following claim:

Claim 1 (WAIT-FOR) A V-valid wait-for diagram establishes that the formula

10

V <Pj =*• Vm W Vm-1 ••• Vl W <^0
i=o

is V-valid.
If, in addition, we can establish the V-state validity of the following implications:

m

P —► V Vi and W ~~^ ^ for J = 0,..., m
i=o

i/zen we we can conclude the V-validity of:

p => qm W qm-i ■■• qi W q0

PET: 1-Bounded Overtaking

The following intermediate assertions can be used to establish 1-bounded overtaking
for program PET:

<^3

Pi

<Po

at 24 A at _7B4 A s = 1
atJL4 A at.m,5
atl4 A (at-mo..3,6 V (atjm4 A s = 2))

The wait-for diagram of <^B for program PET is given in Figure 3. It presents
useful information that is not found in the straightforward listing of 923, ip2, </>i, and
ipo above. For instance, consider premise W2 with respect to ^3 and transition rm4,

{V>3> rmi {yj3 V if2 V <?i V 90}

stating that:

if rTO4 is taken from a state satisfying ^3, then the resulting state must
satisfy ^3 V ^ V 91 V ^.

However, in the verification diagram of Figure 3, there is a single arrow labeled m4

departing from y>3, indicating that

if rm4 is taken from a state satisfying ^3, then the resulting state must
satisfy <p3 V (p.2,

yielding the more precise verification condition:

{^3} Tmi {93 V (^2}

As another example, premise W2 with respect to <p3 and transition r^4 yields
the verification condition:

11

(jf*: at-£4 A atjm^ A s ED
m4

(ifi2- atJ.4 A at-m,5j

m<$

f y>i: atJ4 A (ai.m0..3,6 V {atjm^ A s = 2)) J

f VJ0: ai-£5 1

Figure 3: Verification diagram for 1-bounded overtaking.

{fz} TU {tp3 V V2 V Pi V ipo}

whereas the verification diagram yields:

{Vs} n4 {<f3}

Both conditions can be established automatically, since <pz and the bottom-up in-
variant X2: at-rnz.s —> 2/2 imply that r^4 cannot be taken from a 93-state, but the
stronger condition can be verified more efficiently. For more complicated proofs,
this efficiency is an important advantage. Furthermore, this gain is obtained at
almost no cost, since it is in any case intuitive for the user to connect <pz to <p2 by
only the single arrow m^.

In this case, for n = 3 and the number of transitions |T| = 16, premise W2
yields 48 verification conditions. Once the user supplies the intermediate assertions
ipo,..., tfizt either textually or graphically, all 48 verification conditions are proved
automatically, as well as premises Wl and W3. Again, as pointed out above, the
automatically generated bottom-up invariants are used for these proofs.

2.4 Proving Response

The 1-bounded overtaking property for program PET does not state that P\ is guar-
anteed eventual access to its critical section. The accessibility property is expressed
as the following response formula:

<pR: atJ2 =*> O atJ5

12

Rule CHAIN

The following verification rule, rule CHAIN, can be used to prove simple response
formulas like <PR, i.e., formulas of the form

where p and q are state formulas.

CHAIN For intermediate assertions ipn,...,(p\ and
helpful transitions rn,..., TX :

n

Rl. p -> q V V tpj
i=i

R2. {ipi} T {q V V <pj] fori = l,...,n

R3. {<fii} n {q V V Vi) for i = 1,..., n

R4. (pi —>• En (r,-) for i = 1,..., n

p => Oq

The rule states that to establish the V-validity of response formulas of the above
form, it suffices to identify a sequence of intermediate assertions ipn, ...,tpi, and a
set of just transitions rn,...,ri such that the premises R1-R4 are P-state valid.
Premise Rl states that p implies q (in which case the proof is finished) or one of
the intermediate assertions <p,-. Premise R2 requires that taking any transition from
a </3i-position results in a next position satisfying ipj, for some j < i. Premise R3
requires that taking the just ("helpful") transition r,- from a <£;-position results in a
next position which satisfies (fj for j < i. Premise R4 claims that the just transition
T{ is enabled at every ^-position.

Response Diagram

Like a proof of precedence properties, we can visualize the proof of such response
properties with a verification diagram, in this case a response diagram. A response
diagram is a verification diagram with nodes <pn,...,<po, and two kinds of edges
(distinguished by single and double lines) that satisfies the following requirements:

• If a single edge connects node <pi to node <pj, then i > j.

• If a double edge connects node <pi to node ipj, then i > j.

• Every node <pi, i > 0, has a double edge departing from it. This identifies
the transition labeling such an edge as helpful for assertion </?,-. All helpful
transitions must be just.

13

• No transition can label both a single and a double edge departing from the
same node.

• (fo is a terminal node.

The first two requirements ensure that the diagram is weakly acyclic, i.e., whenever
node (fi is connected by an edge (single or double) to node cpj, j < i. The stronger
second requirement ensures that the subgraph based on the double edges is acyclic,
forbidding self-connections by double edges. The third requirement demands that
every nonterminal assertion (i.e., pi for i > 0) has at least one helpful transition
associated with it.

The verification condition associated with <p and r for the case that r labels only
single edges from <p is as defined in Section 2.1. If r labels any double edges from p,
where pi,.. .,Pk, k > 0, are the r-successors of ip, then the verification condition
associated with <p and r is as follows:

{</?} r {cpi V • • • V pk}

Transition r, identified as helpful, is required to lead away from ip. This, with the
requirement of acyclicity, implies that when this transition is taken from a estate,
the computation gets closer to the goal po-

Furthermore if r labels a double edge departing from p, we require:

p -* En(r)

That is, a transition helpful for <p is enabled on all (^-states. We refer to this
requirement as the enabling requirement.

A response diagram is said to be valid over program V (V-valid) if all the verifi-
cation conditions and enabling requirements are P-state valid for every nonterminal
node pi, i > 0, and every transition r.

The consequences of having a P-valid response diagram are stated in the follow-
ing claim.

Claim 2 (RESPONSE) A V-valid response diagram establishes that the response
formula

m

V <Pj =^ Ovo
3=0

is V-valid.
If, in addition, we can establish the V-state validity of the following implications:

m

p —)■ \J pj and po —> q
j=o

then we can conclude the V-validity of:

p => OQ

14

(ips- at.£2J

(ip7: atJ3J

h
ratJ4

)

Cs=l ^

(<p6: at.mA

W4

hp5: at-m5J

m5

„■ : _

UpA: at.m6J

^ m6)

■ ■

v

H <pz'- o,t.m0__2 A s = 1

>

TO2

(<P2- at.mz A s = 1 j

"

m3

(tpn s = 2\

4

I—
■

^ it p7\

Figure 4: Verification diagram for accessibility.

15

PET: Accessibility

Figure 4 presents the response diagram establishing (pR. The diagram is hierarchical.
In particular, the nodes labeled (p6, <P5, and <^4 are contained in the compound node
labeled s = 1, which itself is contained with nodes tp3, <p2, and tpi in the compound
node labeled atJ4. These encapsulations were inspired by Statecharts [Har87]. A
hierarchical diagram may be interpreted as follows:

• The label of a compound node is implicitly a conjunct in the label of each of
its subnodes.

• Each arrow from a compound node represents an arrow from each of its sub-
nodes, with the same label and destination node.

• Each arrow to a compound node represents an arrow to each of its subnodes,
with the same label and source node.

Thus, the diagram in Figure 4 may be presented explicitly by adding an arrow
labeled £3 from <p7 to each node <p6,...,<pi (deleting the original arrow from <p7),
adding s = 1 as a conjunct in the label of each node <p6, • • •, V4 (deleting the
compound node labeled s = 1), and adding atJL\ as a conjunct in the label of each
node v?6> • • •) Vi (deleting the compound node labeled at -£4).

The resulting diagram satisfies the requirements of the response diagram, i.e., it
is acyclic, it has a goal node (p0 (with no departing arrows), and there is a double
arrow from each node, excluding the goal node, along a path to the goal node.
Each double arrow represents a claim of single-step progress. For instance, the
double arrow from ip3 to <p0 labeled £4 indicates that, if (p3 holds "long enough,"
then eventually statement £4 will be executed and will lead to a <^0-state. Note
that, according to the diagram, it is also possible for m2 to be taken from a state
satisfying <p3, leading to a </?2-state.

Single-step progress is assured by requiring that, for each helpful transition r
labeling a double arrow from a node labeled <p, it must be the case that r is just,
i.e., has an associated weak fairness requirement, and that r is enabled on every
state satisfying <p. An "unhelpful" transition such as m2 from <p3 is indicated by a
single arrow.

Given the diagram in Figure 4, the system is able to check all the associated
verification conditions and establish the desired accessibility property for program
PET.

3 Model Checking

Generally speaking, the model checking problem is to determine whether a given
logical formula can be satisfied by some model by exploring the state space of the
system. In STeP the logical formula is taken to be the program specification,

16

expressed -in (linear-time) temporal logic, and a model is some computation of the
program.

STeP provides an efficient implementation of the model checking algorithm de-
scribed in [MP94b] and originally proposed in [VW86]. We only sketch the algorithm
here.

Given a program V and a linear-time temporal formula ip, the algorithm de-
termines whether there exists a computation of V that satisfies -tip. The approach
is based on automata: the program is represented as a transition graph, which is
viewed as a generator Ap of infinite words over the program's state space, and ip is
viewed as an acceptor Av of infinite words.

There are several types of automata for infinite words. In our algorithm we
use Streett automata [Str82]. A Streett automaton A consists of the following
components:

• a finite set of nodes N,

• an initial node no,

• a finite set of edges E, and

• an acceptance list C = (Pi, Pi),..., (Rm,Pm). Ri C N are called recurrent
nodes and Pt C N are called persistent nodes.

An infinite sequence of automaton nodes, no, ni,..., is accepted by A if

• no is the initial node of A, and

• for every i = 0,1,..., there exists an edge e € E connecting n,- to n,-+i, and

• for the set of nodes, Njnt, that appear infinitely often, for each i = 1,..., m,
either Ninj n Ri / 0, or Ninj C p.

To represent the fairness requirements of V, recurrent edges are added to the
Streett acceptance list [HSB93]. The acceptance list of this modified Streett au-
tomaton (also called Edge/Node Streett automaton) is thus a list of triplets, C =
(Pi, Pi, E\),..., (Rm, Pm, Em), where Ri and P are as before, and E{ C E is a set
of recurrent edges. The acceptance condition of an Edge/Node Streett automaton
is the same as above except for the third condition, which becomes

• at least one of the following holds for each i — 1,..., m:

JV,-n/nÄ:-#0 or NinfCPt, or Einf C E{,

where N^c is, as before, the set of nodes that appear infinitely often and
Ejnt is the set of edges that appear infinitely often.

17

When translating a fair transition system into an Edge/Node Streett automaton,
each fair transition r contributes one triplet (RT,PT,ET) to the Streett acceptance
list. ET contains all edges labeled by r for both compassionate and just transitions;
for a just (weakly fair) transition, PT = 0 and RT contains all nodes labeled by
an assertion on which r is disabled, whereas for a compassionate (strongly fair)
transition these are reversed: RT = 0 and PT contains all nodes labeled by an
assertion on which r is disabled.

In this representation, showing that V satisfies ip reduces to showing that

L{Ap) C L(AV)

where L{Ap) is the language generated by Ap (i.e., the set of all computations of
V), and L{AV) is the language accepted by Av (i.e., the set of all sequences that
satisfy <p). The set inclusion given above can be rewritten as

L(Av)nL(Äv) = ®

or alternatively:

L{Av) r\ L(A-,V) = H)

This can also be written as

L{BV,^) = 0

where Bp^v represents the product automaton, also called the behavior automaton,
of Av and A^. The nodes of B-p,-,^ are labeled by pairs (s,n), where s is an
element of the state space of V and n is a node of A-,v, and the edges are labeled
by transitions of V. The acceptance list of Bpt-,v is the union of the acceptance list
of A-,v and that of A-p.

In the context of fair transition systems, the automaton Bp,-,v is not empty iff
it contains a fulfilling subgraph, i.e., a subgraph that satisfies the Streett acceptance
criteria which result from the fulfillment requirements associated with formulas
such as Op and the fairness requirements of V. A subgraph S satisfies the Streett
acceptance criteria if (1) it is a strongly connected component, and (2) either 5 D
Ri /H,5C Pi, or there exists e € Ei such that e connects two nodes in 5, for
every i = 1,.. .,m.

Following this approach, the algorithm is given as follows. Given a (linear-time)
temporal formula <p, the Streett automaton A-nV is constructed using the algorithm
presented in [KMMP93]. Starting from A-,v and the transition graph of V, Bv,^v

is incrementally constructed. The algorithm adds a maximal strongly connected
component is found, and it then checks whether this component has a fulfilling
subgraph. The algorithm terminates when it finds a fulfilling subgraph, or when
it cannot add any new nodes. In the first case the corresponding computation is
returned as a counter example. In the latter case the "P-validity of ip has been
established.

To illustrate the algorithm we apply it to program INF and the "P-valid property:

18

x > 0

Figure 5: Automaton for (x > 0) W (y = 2)

9: -.((* > 0) W (y = 2))

INF has the following transition relations:

n ■■ 0< x<3 A a:' = a: + 1 A y' = y
T2 : 0 < y < 3 A y' = y + I A x' — x
T3 : x' = 0 A y' = i
T/ : x' = x A y' = y (idling transition

INF'S justice set is J = {ri, r2, rs}.
The automaton for -><£> is shown in Figure 5. Part of INF'S (infinite) transition

graph is shown in Figure 6; in this figure, (a, b) stands for the state where x = a,y =
b. The algorithm constructs the behavior automaton shown in Figure 7, which has
three strongly connected components: (s0,ni), (si,rci), and (s2>"i)- None of these
are fulfilling: all of them fail to satisfy the acceptance triplet originating from
transition r3 (R3 = 0, P3 = 0, E3 = {edge labeled by r3}). Intuitively, none of
these subgraphs is fair with respect to r3: r3 is enabled infinitely often but never
taken. Therefore no computation of INF satisfies (x > 0) W (y = 2), establishing
the V-validity of (p : ->((x > 0) W (y = 2)).

This example illustrates how the model checker is able to verify a property of
an infinite-state program.

4 Invariant Generation

A large class of invariants can be generated automatically by STeP to simplify
the verification process. Each of the invariant generation techniques can be loosely
classified as bottom-up or top-down. In the bottom-up approach only the program
is considered: inductive assertions are deduced from the program structure. The

19

Figure 6: Part of the state transition graph.

n0) 2Ju/so,ni

Figure 7: Behavior automaton.

20

top-down approach is goal-directed: it considers the property that has to be proven
and strengthens some of its parts to produce an inductive assertion.

4.1 Bottom Up: Local Invariants

Local invariants are bottom-up invariants which relate program control predicates to
assertions involving data variables. The system uses several heuristics for generating
local invariants. An important concept in this context is ownership of variables: a
variable y is owned by a statement £ if no transition parallel to £ modifies y.

Reaffirmed Invariants

The simplest type of bottom-up inductive assertions are those which are guaranteed
to hold after execution of each transition that interferes with them, without any
assumption about the state before the execution.

For example, a reaffirmed invariant can be deduced in the case where a transition
sets a variable y to a constant expression c:

4: V := c £2:

If y is owned by £2 we may conclude the inductiveness of

at.£2 —> y = c

i.e., when control is at £2 the value of y is c. Similarly, in the following example, if
y is owned by £2, and Ci and c2 are constant expressions, then from

£\\ if c then y := c\ else y := c2 £2-

we can conclude that

at-£2 -* y = Ci V y = C2

is an inductive invariant.
Another example of a reaffirmed invariant is if a location £ in the program is

reachable only as a result of a test K. In such a case we know that when the location
is first entered the test is valid. If all variables appearing in the test are owned by
£ we can conclude

atJ. —>■ K.

For example, if all variables in c are owned by £1, then from

£Q: await c £\.

we may directly infer the invariant:

at-£\ -> c

21

Similarly from

£0: [while c do 5] ^:

we can infer

at.ii —> -ic

if all variables in c are owned by £\. Similar invariants can be generated for when
statements and conditional statements.

If the possible values of a data variable are known for every program location,
one can reverse the implications. For example, if it is known that

at -£o —> y — Ci

atllt2 -> y = c2yy = c3

at lz ->• y = c3

where £Q, £i, £2, and £3 cover the range of possible program locations, then, if c\, c2

and C3 are distinct, one may infer:

y = c\ —> at JLQ

y = c2 —> atl\>2

y = c3 ->■ o*Ji..3

Range Invariants

Even if it is not possible to determine the exact value of a data variable at a
given location, it is sometimes possible to determine the range from which the
data variable takes its values, if that variable is modified only in a restricted and
predictable way. Range invariants are of the form:

atJ ->• I <y <u

For instance, for the program RES-SEM, shown in Figure 8, STeP generates the
range invariant

y>0.

Invariants of Parameterized Programs

Parameterized programs often contain array variables x such that no single state-
ment or process owns x. However if x[i] is modified only by P[i], invariants like
those described above can still be generated. Consider, for example, program OR-
DER, shown in Figure 9. It grants each process access to its critical section in
the order of its process sequence number. For this program STeP generates the
following local invariants:

Xi: V* : [1..N]. (atJ5[i\ <—> y[t\)

22

local M, y : integer where y — 1

M

to: || P[i]::

'ti: loop forever do
£2: noncritical
£3: request y
£4: critical
£5: release y

Figure 8: Program RES-SEM (resource allocation by semaphores)

X2: Vt : [1..N]. (atJ3[i\ —*• a[t\ > i)

X3-. Vi:[l..iV]. (atJ2[i\—>y[a[i\])

in N : integer where N > 0
local a : array [l..iV] of integer where Vi : [1..AT]. a[i] = 1

y : array [L.iV] of boolean where Vz : [1..AT]. ->y[i]

£Q: while a[i] < i do
i\\ await y[a[i]]
£2: a[i] := a[i] + 1

i=\ £3: critical
£4: y[i\:=T

P[i] ::

Figure 9: Program ORDER

The local invariants %2 and %3 are examples of reaffirmed invariants, and xi
is the conjunction of a reaffirmed invariant and a reverse implication. Using these
invariants, the proof of mutual exclusion for program ORDER, expressed by

Vz,; :i<j: [1..N]. Q-. (at.£3[i] A atJ3\j])

is automatic.

23

4.2 Bottom Up: Linear Invariants

A linear invariant is a linear arithmetic relation involving program variables and
program control states. A typical linear invariant, for instance, is given by:

atJ0..2 + yi = 1

where atl0..i stands for at J0 V atl\ \ZatJ2- Note that boolean expressions are
converted to integers by taking T to be 1 and F to be 0.

Linear invariants can also be generated for parameterized programs, where each
control predicate can be generalized to represent the number of processes at that
control point, e.g., N(atJ0..2) rather than atl0..2-

Let V be a program, represented as a transition system with set of transitions
T and initial condition Q. A set of variables yi,..., ym is linear if the effect of each
transition r € T can be expressed as

m

y'i = c1 + £<&-y*

where cj and cjk are constant expressions, i.e., expressions whose variables are not
modified by any transition of "P. Thus, each variable t/,- is modified only by a linear
combination of other linear variables and constants.

Given a set of linear variables j/i,..., ym and control locations l\,..., tn, a linear
invariant is an equation of the form:

m n

x-- 5>-y; + Y.bj-NiatJj) = K
i=l j=l

where a; and bj are constant expressions and K is a constant. The values of a, and
bj are determined by solving the system of linear equations that results from the
requirements for an inductive invariant, i.e.,

• X is implied by the initial condition 0, which translates into

m n

5>-y° + J2bJ-N(atJJ°) = K

where y° denotes the initial values of t/; and N(at-£j°) denotes the initial
number of processes at £j, and

• x is preserved by each transition T eT, which, for each T £T translates into

m n

J2a* ■ A(r,yi) + Y.br A(r'N(atJj)) = °
i=l 3=1

where A(r, m) is the increment in y,- due to r and A(r, N(atJj)) denotes the
increase or decrease in the number of processes at £j due to r.

24

STeP constructs invariants based on a maximal set of linearly independent solu-
tions (if the resulting system of linear equations is not independent, there is no
unique solution). As an example, consider program RES-SEM, which was presented
in Figure 8. The only linear variable is y, so linear invariants for RES-SEM are of
the form:2

7

XR- a-y + Y,brW(atJj) = K
j=o

Imposing the invariance requirements results in the following system of equations:

e a + b0 = K

TO -b0 + M ■ 61 = 0

rj -&! + 62 = 0

rt -61 + 66 = 0

T2 -62 + ö3 = 0

T3 -a — 63 + 64 = 0

n -64 + h = 0
T5 a - 65 + 61 = 0

T6 -M -66 + 67 = 0

from which STeP constructs, among others, the following invariant:

y + N(atJ4) + N(atJ5) = 1.

In conjunction with the local invariant y > 0, this is sufficient for establishing
mutual exclusion for program RES-SEM.

4.3 Top-down: Strengthening

Top-down invariants, i.e., strengthened invariants, are generated in STeP by in-
variant propagation. Suppose STeP is given a proposed invariant rp to be proven.
The system first generates bottom-up invariants and checks whether ip is induc-
tive relative to the conjunction of all bottom-up invariants. If this is not the case,
i.e., V> cannot be proven, the next step is to strengthen V based on the verification
conditions that could not be proven.

Suppose that ^ is a proposed invariant. Given a transition r for which the
verification condition

M T M

cannot be proven, the system automatically computes the weakest precondition
wpc(tj;, T) of ip with respect to r, i.e., the weakest assertion 7 that guarantees ip is
true when r is taken from a state that satisfies 7. The strengthened invariant is
then taken to be:

2 Strictly speaking, M is also a linear variable, but since it is recognized to be a constant
expression and, as such, does not contribute anything useful to a linear invariant, it is excluded.

25

1p Awpc(ip,r)

Consider, for example, the proof of mutual exclusion, expressed by the invariant

i\>: -i(ai_£5 A at-m$)

for program PET, presented in Section 2. i> is not inductive, since

is not valid for T = £4. STeP automatically computes the weakest precondition of
£4, yielding

wpc(£4,tp): atJ4 A (->y2 V s = 2) ->■ -^(atl5' A at.m£)

T at -TO5

which simplifies to
tpi. atl4 A at-rri5 —> t/2 A s 7^ 2

Similarly for m4:
V>2:- ai^5 A atjm4 -> t/i A s / 1

The conjunction of the proposed invariant and the weakest preconditions,

ip: iß A ipi A ip2

is inductive and all verification conditions are established automatically.

To summarize invariant generation, consider program PET once more. In order
to prove mutual exclusion

fME- -'(at ^5 A atjms)

STeP automatically generates the following invariants:

range 1 < s < 2

local J yi *+ at/3-e

h . \atJ4A at.m5 -> r/2 A s ^2
s r nS ° 1 af-4 A a*_m4 -> t/i As^l

and, using these invariants, automatically establishes all verification conditions.

26

5 Theorem-proving support

Effective verification requires effective theorem-proving, in order to free the user
from the many tedious low-level details of a formal proof. In STeP, most of the
verification conditions that need to be proved for typical systems are trivial. How-
ever, automating the process of proving them requires the integration of a large
variety of tools, which we now briefly describe.

5.1 Simplification

Most of the automated theorem-proving in STeP is done by a very general, but
efficient, rewriting mechanism, which we call the simplifier. It can be best described
as a form of contextual rewriting (a generalization of conditional rewriting, see
[Zha93]) that incorporates a number of specialized features that we have found
useful for dealing with the formulas that commonly occur in verification conditions.
Thus, the contextual rewriting includes:

• A form of non-clausal propositional simplification that can, for instance, sim-
plify a sentence of the form

a A b A (d V c) -> (a A d) V (c A /)

to
a Ab Ac -)• dV f

• Opportunistic reasoning about the interaction of equalities and quantification.
For example,

(Vx)[x = 1 A p(x) -> x = 2 V q(x)]

simplifies to:
p(l) -> q(l)

via special strategies for quantifiers.

• Rewrite rules (conditional and unconditional) for interpreted function sym-
bols. These are useful for simplifying terms involving lists and arrays; for
instance, rewriting

contents(assign(kTra.yl, y, z), y)

to z.

Furthermore, the simplifier relies heavily on congruence closure [NO80] for rea-
soning about equality and uninterpreted function symbols. Congruence closure is
also tightly integrated with a decision procedure for inequalities over totally ordered

27

domains. -The combined decision procedure works in polynomial time in most prac-
tical cases and is an attractive alternative to the more general, but more expensive
Sup-Inf procedure described below. As a result, for example,

f(x) =yAy<zAz<x -» f(x) < x

simplifies to true.
Integrating all of the above features into a single rewriting procedure results in

an extremely effective tool. For instance, it will promptly rewrite

(/(*) < x) A (flf(y) > y) A

/ f{x) > g(y)
V | -» (x^y)

V g(x) < f(y)

to true.

5.2 Decision Procedures

By decision procedure we mean an algorithm that can decide the validity or satisfia-
bility of a class of formulas in a given theory, and always terminates with a positive
or negative answer. Decision procedures for a given theory may vary depending
on their degree of completeness (i.e., which formulas they can decide) and their
complexity, which are traded off against each other.

Two decision procedures for Presburger arithmetic are available3. The first is
based on the Sup-Inf method [Ble75] which efficiently decides a subset of the theory;
the other is an implementation of Cooper's algorithm [Coo72], which is a decision
procedure for the entire theory.

The Sup-Inf method is complete for rational quantifier-free Presburger arith-
metic, and can be extended to handle uninterpreted function symbols [Sho79]. Al-
though it is incomplete if variables are required to be integer-valued and its com-
plexity is exponential, the Sup-Inf method often works well in practice. With it one
can decide, for example, that the formula

x > (y + z) A (z < z) A (y = 0) -» f{x) = f(z)

should simplify to true. Cooper's algorithm can decide the full Presburger theory
over the integers (without function symbols), but is of super-exponential complexity.
It can establish the validity of sentences such as

Vx Vy 3z ((x + z) > y).

Despite the fact that Sup-Inf is incomplete for the integer fragment of Presburger
arithmetic, we have found that STeP has been able to prove most of the verification
conditions that arise in practice using only Sup-Inf and the simplifier.

3Presburger formulas are first-order formulas over integers, integer variables, addition and <.

28

For deciding the validity of prepositional formulas with small clausal forms,
an efficient implementation of the classic Davis-Putnam procedure ([ZS94]) can be
used. A decision procedure to check the validity of prepositional temporal logic
formulas is also provided [KMMP93].

We should note that while the problem of effectively and efficiently integrating
different decision procedures has commanded much attention over the years (e.g.,
[N079, BM88b]), we have not yet implemented the more general methods. We
consider this to be a promising direction for future research and implementation.

5.3 First-order Prover

As pointed out in Section 5.1, the contextual rewriting mechanism can perform
simple reasoning about quantifiers and equality. However, more complex reasoning
involving unification is often needed to prove the validity of certain first-order for-
mulas that arise in verification. Such theorems are seldom "deep," and can often
be proved by applying a few mechanical inference rules with very little heuristic
guidance.

A theorem prover based on non-clausal resolution and paramodulation [MW93]
is available as a semi-decision procedure for the full first-order predicate calculus
with equality, automated in a style similar to the SNARK [SWL+94] and OTTER

[McC94] provers: the search is agenda-based, term-indexing is used for efficient
demodulation and subsumption, and paramodulation is restricted by a recursive
path ordering on terms. This prover also uses the basic simplification procedures
described above. Previously proven invariants can be used as lemmas by this prover.

5.4 Interactive Prover

Because of their worst-case complexity, the more powerful decision procedures need
to be applied in a controlled fashion. Consequently, they are not included in the
main simplifier, which is automatically invoked quite often, and must therefore be
fast. Instead they are left for the user to invoke interactively.

In addition to controlling the application of decision procedures, the interaction
also provides tools for proving the validity of formulas in the undecidable settings
of classical and temporal first-order logic.

This interaction is managed through a Gentzen-style first-order prover (see e.g.,
[Gal87]), which is guided by the user. Subgoals in a proof can be established via
simplification, decision procedures, automatic propositional temporal proof-search,
or resolution. The overall proof search is directed by the user, who decides which
inference rules and decision procedures are applied to any given goal.

We also support a Gentzen-style first-order temporal prover, which can verify
propositional temporal logic formulas automatically; traditional Gentzen-style proof

29

rules are supported, as well as temporal rules such as:

rhA,<p v>,r\-A,on<p
(HD) rhA,Dp (DI-)

r,y,ODyh A
r.GyHA

Proof search proceeds in a bottom-up manner: from the goal below the line, the
search proceeds to the new subgoals above the line.

6 Examples

6.1 N-Process Dining Philosophers Program

Dijkstra's dining philosophers problem describes N philosophers whose only activ-
ities in life are eating and thinking. The philosophers eat only rice, and for this
purpose need two chopsticks each. Unfortunately, their round dining table is only
equipped with N chopsticks. This excludes adjacent philosophers from eating si-
multaneously.

A solution to the dining philosophers problem is given in Figure 10. In program
DINE, chopsticks are acquired via the binary semaphore variables c[l],..., c[N], and
deadlock (the possibility that every philosopher picks up his left chopstick at the
same time) is prevented by the semaphore variable r, having initial value N - 1.
One may interpret r as a door between the library and the dining hall, only allowing
at most N — 1 philosophers into the dining hall.

in N : integer where N > 2
local c : array [1..N] of integer where Vi : [L.iV]. c[i]

r : integer where r = N — 1

t=i
P[i]

= 1

loop forever do
Vi: noncritical
h: request r

£3: request c[i\
£4: request c[(i moc IA0 + 1]
i5: critical
4: release eft]
£1: release c[(i mod N) + l]
4: release r

Figure 10: Program DINE (Dining Philosophers)

Mutual exclusion, stated as

0-<(atjßs[i] A atJ5[(imodN) + l]),

30

follows from the invariants:

Xi: c[t]>0

X2: atJ5..7[i] + at J4..6[{i mod N) +I] + c[(imodN) + l] = 1

The invariant xi is generated as a bottom-up invariant, while X2 is generated by
the strengthening heuristics. Twelve verification conditions need to be proven to
establish the inductiveness of \2, aU °f which are proven automatically.

6.2 Szymanski's N-Process Mutual Exclusion Algorithm

The system has also been applied to prove mutual exclusion for Szymanski's mu-
tual exclusion algorithm [Szy88], which is a symmetric parameterized program that
provides mutual exclusion for an arbitrary number of processes. In [MP90] and
[MP91c], several temporal proof techniques were applied to prove some properties
of this program. The safety property, mutual exclusion, was also formally verified
in [NT91] using the Boyer-Moore prover [BM88a]. We discuss here a more recent
version [SV94] of Szymanski's algorithm. We actually verified a slightly modified
program from the one in the prepublished version of [SV94]. Our version is written
in SPL and corrected to avoid deadlock.

Szymanski's mutual exclusion algorithm is available in two versions. The short-
est, and most abstract, is the atomic version, which allows quantification over pa-
rameterized variables in test statements; these tests are treated as atomic constructs.
The more refined molecular version replaces tests that involve quantified formulas
with more primitive program constructs. The two versions are presented in Fig-
ures 11 and 12, respectively.

The atomic version

The atomic version of Szymanski's mutual exclusion algorithm is shown in Figure 11,
which identifies three parts: the doorway, the waiting room and the inner sanctum.
The variables a, s and w may be given the following interpretation: a[i], s[i] and w[i]
indicate whether process i has requested access to the critical section, has entered
through the doorway and is not in the waiting room, or is in the waiting room,
respectively. The quantified tests in £3, £5, £7, £10 and £n, which are considered
atomic, can be seen as gates between the different stages. Processes can only pass
£3 if there are no processes in the doorway or in the inner sanctum. However, as
long as processes are waiting at £3, all processes that enter are redirected to the
waiting room, opening £3 again. The last process that passes through £3 locks £3
behind it and then bypasses the waiting room, thereby opening the gate £7 such that
the waiting processes can come out of the waiting room. At this point £3 remains
locked until all processes inside the doorway have passed the critical section. Gate
£10 is opened when all processes have left the waiting room. Gate £\\ allows the

31

processes that are inside the doorway access to the critical section, one by one, and
in order of process number.

in N : integer where N > 1
local a : array [1..N] of boolean where Vi : [l..iV].->a[(]

s : array [l.-N] of boolean where Vi
array [1.../V] of boolean where Vi w

[l..N].^s[i]
[l..N].-iw[i]

i=l
P[i\

loop forever do
~£l-. noncritical
£2: a[i] := T

£3: await V? : [1..N]. ->s\j]

£4: (u;[t],s[i]):=(T,T)

e5-. if 3j : [1..N]. {a\j] A -*w\j]) then
4: s[t\:=F
£7: await 3j : [l.JV]. (s[j] A -w;[?])
4: s[*]:=T

£9: tü[i] := F

ho await Vj : [l..iV]. -^[7]

in await V7 : [l-{i- 1)]. ""'«[i]
£12 critical
/l3 (s[i],a[i]):=(F,F)

Figure 11: Program SZY-A (Szymanski's algorithm: atomic version).

This procedure is reflected in the following four invariants,

A0 : at.£s..i3[i] -> ->atM[k]

Ai : a*-&[*] -4- 3* : [l.JV]. at-^iof*]

A2 : atJu..i3[i] -> -ia<_^4..9[Ar]

A3 : ai-£i2,i3W A A; < i -» -naf -i4..i3[&]

which establish mutual exclusion. These invariants may be interpreted as follows:

• AQ\ once a process i has entered the inner sanctum, the doorway is locked,
i.e., no process k may be atJ.$.

32

• A\\ if a process is about to leave the waiting room, there is already a process
k in the beginning of the inner sanctum.

• A2: once a process is in the latter part of the inner sanctum, there is no
process k in the waiting room or in the doorway.

• A3: if a process is in the critical section, there is no other process with a
smaller index in the doorway, waiting room or inner sanctum.

The inductive invariant A3 is established using the conjunction of Ao, Ai, and A2,
where A3 implies mutual exclusion:

n{atJ12[i] A atJulJ] -> i = j)

Bottom-up invariants play a crucial role in establishing the auxiliary invariants.
For example, the system generates the local invariants

a*-4,6,9..i3[(] ** s[i\

atJ3..i3[i] <-> a[i]

at JH.5.s[i\ <-> w[i]

which are used to establish A0,A\,A2 and A3. Of the 69 required verification
conditions, 54 were established automatically. The remainder required short sessions
using our interactive prover.

The molecular version

Statements such as
await 3j : [I..N]. (s\j] A ->w[j])

involve quantifiers over every process and are not usually available as atomic prim-
itives. Therefore, we must refine the quantifiers to available programming language
constructs. Typically, statements like the one above can be refined into loops, e.g.:

while -•s[j] V w\j] do
j := (j mod N) + l

and similarly for universal quantifiers. The refined program is shown in Figure 12.
Along with the refinement of the program, we must also refine the invariants

we expect to hold. The invariants Ao, Ax, A2 and A3 from the atomic case are thus
refined into:

33

in N : integer where N > 1
local a : array [l..iV] of boolean where Vi

s : array [1--N] of boolean where Vi
w : array [1--N] of boolean where Vi

a\i\ [1..N]
[1..N]. -.«[»]
[1..N]. w\i\

P[i\

'£$: loop forever do
local j : integer
l\. noncritical
4: (a[i\J) :=(T,1)
4: while j < N do

4: when _|s[i] do

 doorway
4: Hi],s[i],i):=(T,T,l)
 waiting room

£7: while j < N do
8: if a[7'] A -iw\j] then

'4: s[i] := F
£io: while ->s[j] V w\j] do

4i = J := (jmodN) + l
ei2-.(j,s[i]):=(N+l,T)

else ^i3: j := j + 1
 inner sanctum

*M:MtU):=(F,l)
£i$: while j < N do

£ie'. when ->w[j] do

*18: J := 1
£ig: while j < i do

4o: when ->s[j] do

42: critical
4a: (s[i],a[i]) :=(F,F)

Figure 12: Program SZY-M (Szymanski's algorithm: molecular version).

34

at Ji4..23[i]
M0: | V atl7fi[i\f\j[i\>k

V atl13[i]Aj[i]>k

3r : [1..N].
/ A

A

(r = iV atA4..23M) \
{atJ3A[k]^j[k]<r)
iatJ5[k]->j[k]<r)
-iatl6[k])

Mi : atlx2[i\ -> 3ft : [1..JV].
V

0*^15,16W Aj[ft] < i
ai_£i7[ft] Aj'[ft] < z

Mo

(atJi8..23[i] ^
V atJl5A6[i\Aj[i}> k

\V oiii6[i]Aj[il>* /
-lai J7..14[A;]

Ot -^22,23W \
M3 : ft < i A I V ai-£i9,2oW Aj'[i] > ft ->• -.at J7..23W

V af_£2iW Aj'[i] > ft y

The local variable j is represented as an array indexed over the parameterized
processes. The invariant M3, like A3, implies mutual exclusion at the critical section.

Verification of mutual exclusion for the molecular version required proving 129
verification conditions, 99 of which were established automatically by the simplifier.
The rest were established using the interactive prover.

The refinement of the invariants of the atomic algorithm into the invariants of
the molecular algorithm was nontrivial. The most difficult part was refining AQ

into Mo. The interactive prover proved to be useful as a design tool in this case.
When an incorrect invariant was presented to the interactive prover, the invalid
verification conditions often gave valuable insight into how to correct the erroneous
program assertion.

6.3 Distributed iV-way Arbiter Circuit

As a final example, we consider the high-level specification of a distributed iV-way
arbiter circuit ARB, originally proposed by Martin [Mar85] and studied in [D1I88].

The proposed parametrized circuit manages mutual exclusion between N users
having access to a shared resource. The circuit is composed of N arbiter cells

35

Figure 13: Distributed iV-way arbiter circuit ARB.

connected in a circular pattern. Each user is connected to a cell of the arbiter, and
there is a single token that circulates among the cells: whenever a cell has the token,
the corresponding user can be granted access to the shared resource.

A cell can receive requests both from the user and from the cell to the right. If
it has the token and receives a request from the user, the cell destroys the token
and grants access to the user; the token reappears when the user releases the shared
resource. If a cell has the token and receives a request from the cell to the right, it
passes the token to the requesting cell. If both requests occur at the same time, the
cell nondeterministically chooses which one to satisfy. If a cell receives a request
but neither the cell nor its user has the token, the cell forwards the request to the
cell to the left, and waits for the token.

The cells and the users communicate using a four-phase asynchronous handshake
protocol based on request and acknowledge signals. The connections between the
users and the cells are depicted in Figure 13. The signals rc and ac represent requests
and acknowledges between cells, the signals ru and au represent user requests and
acknowledges, and t represents the token.

36

time

"uWi

1
1

critical release ! noncritical ! request

Figure 14: Four-phase handshake protocol between user i and cell i, 0 < i < N.

time

rrU]

ac [i]

i

grant ! received quiescent

i
i

request I

Figure 15: Four-phase handshake protocol between cell i and cell (i — l)mod N,
0 < *' < N.

37

The protocol between user i and the corresponding cell i, 0 < i < N, is shown in
Figure 14. Initially, both ru[i] and au[i] are F. When the user wishes to access the
shared resource, it sets ru[i] to T. If the arbiter cell has the token, it responds to the
request by setting au[i] to T and destroying the token. When the user releases the
shared resource, it sets ru[i\ to F, and the arbiter cell acknowledges this by setting
au[i] to F and recreating the token.

The protocol between cell i and cell (i - l)mod N, 0 < i < N, is shown in
Figure 15. Initially, both rc[i] and ac[i] are F. Cell i can request the token by
setting rc[i] to T. If cell (i - l)mod N has the token, it can respond to the request
by destroying the token and setting ac[i\ to T. Cell i then acquires the token and
acknowledges this by setting rc[i] to F. Finally, cell (i - l)mod N sets ac[i] to F.4

The high-level behavior of the circuit has been encoded in SPL as shown in

Figure 165.

Mutual Exclusion

The mutual exclusion property for ARB can be stated as:

□ Vj, k : [O..N-l].(au\j] A au[k] -*• j = fc).

This property is established with the help of the auxiliary invariant,

3\j:[0..N-l].(t\j]Vau\j])

A

Vj:[O..N-l].^(t\j]Aau[j])

stating that at any given time there is exactly one cell that either has the token or
is granting the user access to the resource. To prove this invariant, STeP automat-
ically generates 12 verification conditions, which can be established with the usual
combination of automatic and interactive theorem proving.

Absence of Unsolicited Requests

Another desirable property of the arbiter circuit is that a cell should not request
the token, unless

1. it is receiving a request from the user or from the cell to the right, and

2. the cell does not have the token, nor it is granting access to the shared resource.

4In this model, the token simultaneously disappears from cell (i - l)mod N and reappears in
cell i. This is consistent with the model presented in [Dil88].

5 This program is slightly different from the model presented in [DU88]: when an arbiter cell
receives a request from its cell to the right it checks that its user is not accessing the resource before
forwarding the request, while it does not in Dill's model.

38

in N : integer where N > 1
local rc : array [O..Ar-l] of boolean where Vi : [0../V—1

ac : array [0..iV—1] of boolean where Vi : [0..JV—1
ru : array [0..iV—1] of boolean where Vi : [0.../V—1
au : array [0..iV—1] of boolean where Vi : [0..N-1
t : array [0..iV-l] of boolean where Vi : [0..iV-l

loop forever do
lx : guard ->ru[i] A -iau[i\ do ru[i] := T

->ar\i\
-T,. Z

->auli\
t[i] «i = 0

II
i=0

or

or

or

U2 : guard ru[i] A au[i] do ru[i] := Fj

/3 : guard ru[i] A -iau[z] A t[i] do (*[i], au[i]) := (F, T)

U : guard ->ru[i] A au[z] do (t[i], au[i\) := (T, F)

or

or

l5 : guard ->rc[i] A ->ac[z] A —»*[*] A ->ac[i]

' ru[i] A -ia„[i] ^
A V

^ rc[(z + l)mod iV] A ->ac[(i + l)mod N])

do rc[i] := T

k : guard -irc[(i + l)mod TV] A ac[(i+ l)mod TV]
do ac[(i+l)mod iV] := F

or
77 : guard rc[(i+ l)mod TV] A -nac[(i + l)mod iV] A i[z]

t[i] \ / F \
do | *[(*' +l)mod N] := T

ac[(i+l)mod N]) \T)
or

/8 : guard rc[i] A ac[i] do rc[i] := F

Figure 16: High-level SPL encoding of ARB.

39

This property is not essential for mutual exclusion, but it contributes to the effi-
ciency of the design. It is expressed by the temporal logic formula:

DVj : [0..N-1] .

7 'S] \
A -►

\ -"OcI>'] /

(-<3\ \
A A ru\j) V

' re[(j+ 1)mod N]
A

v -iac[(j+l)mod N]

This invari ant can also be proved by STeP.

7 Conclusions

Despite the fact that STeP is still at an early stage of development, it has already
proved useful in understanding and debugging complex programs. For instance,
the system helped identify an error in the mutual exclusion algorithm from a draft
version of [SV94] that allowed the possibility of deadlock.

Although STeP is founded on the deductive methodology of Manna and Pnueli
[MP94b], its development has been inspired by a large body of related work in
formal verification, such as the PVS [SOR93] and SMV [BCMD90] systems, rep-
resenting the deductive and model-checking approaches, respectively. Other recent
approaches to combining model checking and deduction include [Hun93] and [KL93],
where model checking is used to verify local properties of a system, which are then
combined to prove global properties using deductive techniques.

The system presented in this paper reflects six months of implementation effort.
Obviously there are many areas that need to be improved and completed. Major
extensions that are being worked on include:

• Increased flexibility of verification diagrams;

• Inclusion of refinement verification rules [KMP94];

• Tighter integration of decision procedures, including more sophisticated constraint-
solving techniques;

• Incorporation of decomposition, following the techniques described in [Cha93];

• Providing better debugging facilities;

• Connection of other systems to STeP (e.g., symbolic computation systems
like Mathematica to support hybrid systems).

• Addition of the ability to handle real-time and hybrid systems.

40

Acknowledgements

We would like to thank Amir Pnueli and Arjun Kapur for their feedback and com-
ments, and Xavier Leroy for his ML advice.

41

References

[BCMD90] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Symbolic model
checking: 1020 states and beyond. In Proc. 5th IEEE Symp. Logic in
Comp. Sei., pages 428-439, June 1990.

[Ble75] W.W. Bledsoe. A new method for proving certain Presburger formu-
las. In Proc. of the 4th International Joint Conference on Artificial
Intelligence, pages 15-21, September 1975.

[BM88a] R.S. Boyer and J S. Moore. A Computational Logic Handbook. Aca-
demic Press, Boston, MA, 1988.

[BM88b] R.S. Boyer and J S. Moore. Integrating decision procedures into heuris-
tic theorem provers: A case study with linear arithmetic. Machine
Intelligence, 11:83-124, 1988.

[Cha93] E. Chang. Compositional Verification of Reactive and Real-Time Sys-
tems. PhD thesis, Department of Computer Science, Stanford Univer-
sity, Stanford, California, 1993.

[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplication. In
Machine Intelligence, volume 7, pages 91-99. American Elsevier, 1972.

[Dil88] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. MIT Press, 1988.

[Gal87] J.H. Gallier. Logic for Computer Science—Foundations for Automatic
Theorem Proving. Wiley, New York, 1987.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Sei.
Comp. Prog., 8:231-274, 1987.

[HSB93] R. Hojati, V. Singhal, and R.K. Brayton. Edge-Street/Edge-Rabin au-
tomata environment for formal verification using language containment.
SRC report, University of California, Berkeley, 1993.

[Hun93] H. Hungar. Combining model checking and theorem proving to verify
parallel processes. In Proc. 5th International Conference on Computer
Aided Verification, volume 697 of Lecture Notes in Computer Science,
pages 154-165. Springer-Verlag, 1993.

[KL93] R. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and
beyond. In C. Courcoubetis, editor, Proc. 5th Int. Conf. on Computer-
Aided Verification, number 697 in Lee. Notes in Comp. Sei, pages 166-
179. Springer-Verlag, 1993.

42

[KMMP93] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm
for full prepositional temporal logic. In Proc. 5th International Confer-
ence on Computer Aided Verification, volume 697 of Lecture Notes in
Computer Science, pages 97-109, 1993.

[KMP94] Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification of sim-
ulation and refinement. In J.W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, A Decade of Concurrency, volume 803 of Lec-
ture Notes in Computer Science, pages 273-346. Springer-Verlag, 1994.

[Man94] Z. Manna. Beyond model checking. In Proc. 6th International Confer-
ence on Computer Aided Verification, volume 818 of Lecture Notes in
Computer Science, pages 220-221. Springer-Verlag, 1994.

[Mar85] A.J. Martin. The design of a self-timed circuit for distributed mutual
exclusion. In H. Fuchs, editor, Chapel Hill Conference on Very Large
Scale Integration. Computer Science Press, 1985.

[McC94] W.W. McCune. OTTER 3.0 reference manual and guide. Technical Re-
port ANL-94/6, Argonne National Laboratory, Mathematics and Com-
puter Science Division, Argonne, Illinois, January 1994.

[MP90] Z. Manna and A. Pnueli. An exercise in the verification of multi-
process programs. In W.H. J. Feijen, A.J.M van Gasteren, D. Gries,
and J. Misra, editors, Beauty is Our Business, pages 289-301. Springer-
Verlag, 1990.

[MP91a] Z. Manna and A. Pnueli. Completing the temporal picture. Theor.
Comp. Sei., 83(1):97-130, 1991.

[MP91b] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems: Specification. Springer-Verlag, New York, 1991.

[MP91c] Z. Manna and A. Pnueli. Tools and rules for the practicing verifier. In
R. Rashid, editor, Carnegie Mellon Computer Science: A 25-year Com-
memorative, pages 121-156. ACM Press and Addison-Wesley, 1991.

[MP94a] Z. Manna and A. Pnueli. Temporal verification diagrams. In Proc. of the
lli/l Annual Symp. on Theoretical Aspects of Computer Science, volume
789 of Lecture Notes in Computer Science, pages 726-765. Springer-
Verlag, 1994.

[MP94b] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, New York, 1994. To appear.

[MW93] Z. Manna and R. Waldinger. The Deductive Foundations of Computer
Programming. Addison-Wesley, Reading, MA, 1993.

43

[N079] - G. Nelson and D.C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
l(2):245-257, October 1979.

[NO80] G. Nelson and D.C. Oppen. Fast decision procedures based on congru-
ence closure. J. ACM, 27(2):356-364, April 1980.

[NT91] M. Nagayama and C.L. Talcott. An NQTHM mechanization of "An ex-
ercise in the verification of multi-process programs". Technical Report
STAN-CS-91-1370, Computer Science Department, Stanford Univer-
sity, Stanford, California, June 1991.

[Sho79] R.E. Shostak. A practical decision procedure for arithmetic with func-
tion symbols. J. ACM, 26(2):351-360, April 1979.

[SOR93] N. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A
reference manual (beta release). Technical report, Computer Science
Laboratory, SRI International, Menlo Park, California, March 1993.

[Str82] R.S. Streett. Propositional dynamic logic of looping and converse is
elementarily decidable. Information and Control, 54:121-141, 1982.

[SV94] B.K. Szymanski and J.M. Vidal. Automatic verification of a class of
symmetric parallel programs. In Proc. 13th IFIP World Computer
Congress, 1994. To appear.

[SWL+94] M.E. Stickel, R. Waldinger, M. Lowry, Th. Pressburger, and I. Under-
wood. Deductive composition of astronomical software from subroutine
libraries. In Proc. 12th Int. Conf. on Automated Deduction, pages 341-
355, 1994.

[Szy88] B.K. Szymanski. A simple solution to Lamport's concurrent program-
ming problem with linear wait. In Proc. 1988 International Conference
on Supercomputing Systems, pages 621-626, 1988.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proceedings of the First Symposium on
Logic in Computer Science, pages 322-331, Cambridge, June 1986.

[Zha93] H. Zhang. Contextual rewriting in automated reasoning. Technical Re-
port Technical Report 93-07, Department of Computer Science, Uni-
versity of Iowa, August 1993.

[ZS94] H. Zhang and M.E. Stickel. Implementing the Davis-Putnam algorithm
by tries. Draft manuscript, March 1994.

44

